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In the first part of this course, we will present some uncertainty principles related to Heisenberg’s
famous uncertainty principle, a mathematical version of which roughly states that a function in
L2(Rd) cannot be too localized in both space and frequency. More precisely, given two measurable
sets Σ, S ⊂ Rd, we aim to understand under what conditions on the pair (S,Σ) the following
property is satisfied

∀f ∈ L2(Rd), (supp f ⊂ S and supp f̂ ⊂ Σ) =⇒ f = 0.

We will also be interested in pairs (S,Σ) that satisfy the following stronger property

(1) ∃C(S,Σ) > 0,∀f ∈ L2(Rd), ∥f∥L2(Rd) ≤ C(S,Σ)
(
∥f∥L2(Rd\S) + ∥f̂∥L2(Rd\Σ)

)
.

We will begin by stating and proving some qualitative results, including the Logvinenko-Sereda
theorem, which gives a complete characterization of the pairs (S,Σ) satisfying condition (1) when
Σ is assumed to be bounded (in addition to being measurable). We will then present a precise
quantitative uncertainty principle for a class of analytic functions, whose proof is based on an
approach due to Kovrijkine, and which notably allows us to give an expression for the constant
C(S,Σ) in the inequality (1) in the context of the aforementioned Logvinenko-Sereda theorem.

The second part of this course aims to apply the previously established uncertainty principles
to the study of the null-controllability of the heat equation posed on Rd

(2)

{
∂tu(t, x)−∆u(t, x) = h(t, x)1ω(x), t > 0, x ∈ Rd,

u(0, ·) = u0 ∈ L2(Rd),

where ω ⊂ Rd is a measurable set with positive measure. Given a time T > 0 and an approximation
parameter ε ≥ 0, we aim to determine the correct geometry to impose on the support ω ⊂ Rd in
order to null-control the equation (2) exactly or approximately. In other words, for any initial data
u0 ∈ L2(Rd), we seek to determine whether it is possible to find a control h localised in [0, T ] × ω
such that

∥u(T, ·)∥L2(Rd) ≤ ε∥u0∥L2(Rd) and ∥h∥L2([0,T ]×ω) ≤ Cε,ω,T ∥u0∥L2(Rd).

The case ε = 0 corresponds to the exact control and the case ε > 0 to the approximate control. The
link between the concepts of uncertainty principle and null-controllability is made via the Hilbert
Uniqueness Method, which states that the concepts of exact and approximate null-controllability
are respectively equivalent to the concepts of observability and approximate observability, which are
written as ∥∥eT∆u0

∥∥2
L2(Rd)

≤ Cε,ω,T

∫ T

0

∥∥et∆u0∥∥2L2(ω)
dt+ ε∥u0∥2L2(Rd),
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the case ε = 0 corresponding to the exact observability and the case ε > 0 to the approximate
observability. We will present in detail the Hilbert Uniqueness Method, as well as Miller’s telescopic
series method, which allows us to obtain precise exact observability costs C0,ω,T . Depending on the
progress of the course, other topics related to null-controllability may also be covered.

Possible plan of the course

Chapter 0 - Remainders on the Fourier transform on L2(Rd).

Chapter 1 - Qualitative uncertainty principles.

Chapter 2 - Quantitative uncertainty principles.

Chapter 3 - Null-controllability of the heat equation on Rd.
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