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The goal of this course is to introduce the audience to the study of partial differential equations
of hyperbolic type and more precisely of scalar conservation laws of the form

∂tρ(t, x) + divF (t, x, ρ(t, x)) = 0,

for t > 0 and x ∈ Ω where Ω is an open subset of Rd (d ∈ N⋆) and where F : R×Rd×Rn → Rn

(with n ∈ N⋆) is a given vector field function.
We will particularly concentrate on the linear case corresponding to F (t, x, ρ) = ρ v(t, x) with
v : R× Ω → Rn and on the one-dimensional (1-D) nonlinear case where F (t, x, ρ) = f(ρ) with
f : R → R.

Prerequisites: Differential calculus and differential equations. Basic functional analysis. Lebesgue
integration theory.

1. Modelling of transport phenomena

- Some examples in the 1-D case (traffic flow, gas dynamics, ...)
- The multi-D case : Reynolds transport theorem. Continuity and transport equations

2. The linear transport equation

- Smooth solutions by the method of characteristics
- Weak solutions of the linear transport equation. Jump conditions. Existence and
uniqueness

- Finite Difference and Finite volume schemes in 1-D : construction, consistency, sta-
bility, convergence.

- Extensions to the multi-D setting.

3. Nonlinear conservation laws in 1-D

- Using the characteristics : local in time well-posedness of smooth solutions, finite
time singularities, nonlinear regularization process

- Study of weak solutions : Rankine-Hugoniot conditions, global in time existence,
non uniqueness

- Entropy solutions : physical motivations, definition and characterizations (Lax con-
ditions, Oleinik conditions),

- Krushkov entropies. Uniqueness of the entropy solution by the doubling variables
technique. Krushkov theorem.

- Riemann problems : definition, shocks and rarefaction waves
- Finite volume methods : monotone fluxes, TVD schemes. Convergence in 1-D to-
wards an entropy solution for BV data

4. Possible extensions

- Few words concerning hyperbolic systems
- Finite volume schemes for scalar conservation laws in any dimension
- Boundary conditions
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