Convergence of Probability Measures and Introduction to Optimal Transport

Overview

This lecture is divided into two main parts:

- Part 1: Convergence of Probability Measures
- Part 2: Introduction to Optimal Transport

Part 1: Convergence of Probability Measures

I. Introduction and Preliminary Concepts

- **Basic Definitions:** Recall of stochastic convergence (e.g., convergence in distribution, almost sure convergence, tight convergence).
- Motivation:
 - Central Limit Theorem (CLT)
 - Donsker Invariance Principle: The Brownian motion as the limit of properly scaled random walks.

II. Topology of Convergence in $\mathcal{M}_1(E)$ (Set of Probability Measures)

- Polish Space: Complete, separable metric spaces.
- Tightness and Prokhorov Theorem:
 - Definition of tightness and its role in convergence.
 - Prokhorov's theorem ensures compactness in $\mathcal{M}_1(E)$.
- Properties of the Topology in $\mathcal{M}_1(E)$: Case of \mathbb{R} and \mathbb{R}^d and general case.
- Metrics on $\mathcal{M}_1(E)$: Example of the Lévy-Prokhorov metric...

III. Functional Limit Theorems

- Donsker Invariance Principle: Detailed proof using convergence of stochastic processes.
- Topology of the continuous Skorokhod Space:
- Kolmogorov Criterion: Sufficient conditions for tightness in the Skorokhod space.

Part 2: Introduction to Optimal Transport

IV. Monge-Kantorovich Problem

- Monge's Problem: Historical context, definitions, and examples.
- Kantorovich's Relaxation: Reformulation as a convex optimization problem.

V. Existence of Optimal Transport Plans

• Proofs and examples of existence under specific conditions.

VI. Optimal Transport in One Dimension

- Discrete Case: Transport between two discrete distributions.
- General Case: Properties in the continuous setting.

VII. Optimal Transport in Higher Dimensions

- Cyclic Monotonicity: Key property in higher dimensions.
- Brenier's Theorem: Existence and uniqueness for quadratic cost.

VIII. Wasserstein Distance

- Definition and properties of the Wasserstein metrics W_p .
- Connections to probability measure convergence and applications.

Reference

1) P. Billingsley, *Convergence of Probability Measures*, 2nd ed., Wiley Series in Probability and Statistics, John Wiley & Sons, New York, 1999.

2) G. Peyré and M. Cuturi, Computational Optimal Transport, ArXiv:1803.00567, 2018.

3) C. Villani, *Optimal Transport: Old and New*, Grundlehren der mathematischen Wissenschaften, vol. 338, Springer-Verlag, Berlin, Heidelberg, 2009.