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Abstract. Minimizing harmonic maps are natural higher dimensional generalizations of geodesics.

In contrast to geodesics however, harmonic maps have singularities, due to topological obstruc-

tions or energy efficiency.
More specifically, we consider maps u from an open set in Rd with values into a closed subset

N in Rn. We then define the energy

E(u) =

ˆ
Ω
|Du(x)|

2
dx.

We thus assume implicitly that each coordinate uj of u belongs to the Sobolev space W 1,2(Ω) for

j = 1, . . . , n, so that the integrand |Du(x)|2 = |Du1(x)|2 + · · ·+ |Dun(x)|2 is summable on Ω.

We study the so-called minimizing harmonic maps u ∈W 1,2(Ω;N ) which minimize the energy
E, in the sense that for every competitor w agreeing with u on ∂Ω, one has

E(u) ≤ E(w).

When N is a compact submanifold of Rn without boundary, a classical theorem due to Schoen
and Uhlenbeck asserts that such minimizers are smooth outside a singular set of dimension less

than d− 3. This result is optimal in view of the classical example x 7→ x
|x| from the ball B3 into

the sphere S2.

This series of three lectures is an essentially self-contained introduction to minimizing har-
monic maps, with special emphasis on the proof of the above regularity theorem. The latter

involves several important tools, which play a crucial role in many fields of Analysis, includ-

ing the monotonicity formula, reverse Poincaré inequalities, compactness theorems and density
functions.
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