$\begin{array}{c} M2~Mathematics-Research~and~Innovation\\ 2025-2026 \end{array}$

Name and first name: Email address: Citizenship: Previous University: Current: UPS - INSA - ISAE MINT Project after completion of M2RI:
Track: □ Probability and Statistics □ P.D.E, Numerical Analysis, Control theory □ Algebra, Dynamics, Geometry, Topology
BASIC COURSES (choose 4, at least 3 among A1-A9)
A1: Algebraic Topology
A2: An introduction to hyperbolic and translation surfaces
A3: Introduction to Complex Analytic Geometry
A4: Introduction to Optimal Mass Transport
A5: Elliptic PDEs and Evolution Problems
A6: An introduction to the theoretical and numerical analysis of nonlinear conservation laws
A7: Convergence of Probability Measures and Optimal Transport
A8: Stochastic calculus
A9: Asymptotic Statistics
A10: Approximation of PDEs
A11: Advanced statistical methods
A12: The Dynamical System of Billards
A13: On controlled dynamical systems: structured modelling and numerical methods
A14: On biological science and climate modeling
READING SEMINAR (choose 1)
C1: The spectrum of the Laplacian on hyperbolic surfaces
C2: Scaling limits in statistical mechanics - Unique continuation for elliptic partial differential
C3: Entropy and Large Deviations
ADVANCED COURSES (choose 2)
B1: Affine Surfaces, Homogeneous Vector Fields and Germs Tangent to the Identity
B2: Introduction to Homotopy Theory
B3: Regularity Theory for Minimizing Harmonic Maps
B4: Regularization of Ill-posed Inverse Problems and Applications
B5: Branching Brownian motion and variants

Robust Optimization and Statistical Learning

B6: