
Partiel du mercredi 9 novembre 2016

Durée : 2h. Documents et téléphone portable interdits. Calculatrice autorisée.

Questions de cours et applications. Soit l'arbre suivant donnant les probabilités d'une expérience aléatoire composée de 3 phases successives.

- 1. Traduire mathématiquement les données de l'arbre.
- 2. Compléter l'arbre numériquement. Justifier.
- 3. Quel événement obtient-on sur la première branche, du sommet initial au sommet final? Donner la formule mathématique permettant d'en calculer la probabilité.
- 4. Calculer P(T) en explicitant la formule utilisée.
- 5. Sachant que T a été observé, avec quelle probabilité est-elle issue de B?

Exercice 1

- 1. On dispose de deux dés physiquement indiscernables, l'un non pipé, l'autre pipé dont la probabilité d'obtenir 6 est de 0,4. On lance 2 fois de suite un dé choisi selon un des protocoles suivants. Dans chaque cas, quelle est la probabilité d'obtenir au moins une fois un 6?
 - (a) on choisit un dé au hasard et on le lance 3 fois de suite;
 - (b) on choisit le dé au hasard à chacun des 3 lancers;
 - (c) on choisit au hasard un dé et on change de dé à chaque lancer.
- 2. Ayant découvert le dé pipé, on le lance jusqu'à obtenir un 6. Quelle est la loi du nombre X de lancers nécessaires? Justifier et vérifier que l'on obtient bien une loi de probabilité.

Exercice 2. Soit X une variable aléatoire dont une densité est la fonction f définie sur [0,1] par :

$$f(x) = k(1-x)^{\frac{1}{3}}.$$

- 1. Déterminer k pour que f soit une densité de probabilité.
- 2. Déterminer la fonction de répartition de X.
- 3. Montrer que E(X) et $E((1-X)^2)$ sont bien définies. Les calculer.
- 4. Soit Y = 1 X. Quelle est la loi de Y?
- 5. Calculer d'une autre façon les deux espérances précédentes.

Exercice 3. On considère que, pour un conducteur, le nombre X de kilomètres avant le premier accident suit une loi normale de moyenne 35000 km avec un écart-type de 5000 km.

- 1. Déterminer le pourcentage d'individus ayant eu leur premier accident après les 25000 km et avant les 40000 km.
- 2. Au bout de combien de kilomètres est-on assuré que 75% des conducteurs ont eu leur premier accident?

Exercice 4. La durée d'attente exprimée en minutes à chaque caisse d'un supermarché peut être modélisée par une variable aléatoire T qui suit une loi exponentielle de paramètre strictement positif λ .

- 1. (a) Déterminer une expression exacte de λ sachant que $P(T \le 10) = 0, 7$. On prendra pour la suite de l'exercice, la valeur 0,12 comme valeur approchée de λ .
 - (b) Donner une expression exacte de la probabilité conditionnelle P(T > 15|T > 10).
 - (c) Sachant qu'un client a déjà attendu 10 minutes à une caisse, déterminer la probabilité que son attente totale ne dépasse pas 15 minutes. On donnera une expression exacte, puis une valeur approchée à 0,01 près de la réponse
- 2. On suppose que la durée d'attente à une caisse de ce supermarché est indépendante de celle des autres caisses. Actuellement 6 caisses sont ouvertes. On désigne par Y la variable aléatoire qui représente le nombre de caisses pour lesquelles la durée d'attente est supérieure à 10 minutes.
 - (a) Donner la loi de Y.
 - (b) Le gérant du supermarché ouvre des caisses supplémentaires si la durée d'attente à au moins 4 des 6 caisses est supérieure à 10 minutes. Déterminer à 0,01 près la probabilité d'ouverture de nouvelles caisses.

Table de la loi N(0,1).

	ı									
x	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5717	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0, 8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1, 1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986