

Grégory Faye

CNRS, UMR 5219 Institut de Mathématiques de Toulouse Université Paul Sabatier Toulouse

L'équation de la chaleur

Mots clés : équation aux dérivées partielles, base Hilbertienne, série de Fourier et intégration.

Résumé. L'objectif du stage est l'étude de l'équation de la chaleur unidimensionnelle, dans un intervalle borné, avec conditions de bord de Dirichlet homogènes :

$$\begin{cases}
\partial_t u(t,x) &= \partial_x^2 u(t,x), & t > 0, \quad x \in]0, \pi[, \\
u(0,x) &= u_0(x), & x \in]0, \pi[, \\
u(t,0) = u(t,\pi) &= 0, & t > 0.
\end{cases} \tag{1}$$

Cette étude se fera en plusieurs étapes, dont les grandes lignes sont les suivantes :

- 1. dérivation de l'équation à partir de considérations physiques : loi de Fick;
- 2. existence, unicité et régularité des solutions de (1) pour $u_0 \in L^2(]0,\pi[)$;
- 3. stabilité des solutions par rapport à la condition initiale en norme $L^2(]0,\pi[)$ et $L^{\infty}(]0,\pi[)$;
- 4. extension des résultats pour des conditions de bord non homogène ou bien lorsque l'équation présente un terme source;
- 5. résolution approchée par la méthode des différences finies.

Remarque générale. Il est possible d'illustrer les résultats obtenus par des simulations numériques.

Prérequis : cours d'intégration de Lebesgue.