
Jonathan Chirinos-Rodŕıguez (jonathan-eduardo.chirinos-rodriguez@irit.fr)
Emmanuel Soubies (emmanuel.soubies@irit.fr)
Luca Calatroni (luca.calatroni@unige.it)
Silvia Villa (silvia.villa@unige.it)
October 14, 2025

Master internship proposal

Learning Optimal Regularization Parameters for Inverse Problems

Context

An inverse problem consists in recovering a solution u∗ from a set of (possibly noisy) linear mea-
surements Au∗, where A is an operator modeling the measurements acquisition process. This task
appears in a broad range of practical problems in engineering, signal processing, medical imaging
or computer vision. In mathematical terms, an inverse problem can be modeled as

x = Au∗ + ε,

where x denotes the available measurements and ε is a deterministic quantity modeling the possible
presence of noise in the observations. The task of finding u∗ from the knowledge of x becomes
hard when the problem is ill-posed. Regularization theory [1, 2] offers a systematic way to address
ill-posedness by providing stable approximations of the inverse. A classical approach for restoring
well-posedness is based on finding solutions of the following variational problem

min
u

ℓ(Au, x) + λR(u), (1)

for some λ ∈ (0,+∞). The term ℓ(A·, x) is known as the data-fitting term, and constraints the
solution to remain close to the available measurements. The function R, referred to as the regu-
larization function, incorporates prior knowledge about the solution into the problem formulation.
Finally, the scalar λ ∈ (0,+∞) is known as the regularization parameter. This parameter allows
to choose the relative importance of the data-fitting term and the regularization function, thereby
influencing the quality of the recovery results. Consequently, a proper selection of the regulariza-
tion parameter is essential for achieving optimal reconstruction outcomes. To this day, the task of
selecting a suitable λ > 0 remains a challenging problem.

The above strategy for solving inverse problems can be viewed as a model-based technique, relying
on a mathematical model with well-established properties. For instance, variational methods (1)
have for a long time achieved state-of-the-art results [3] in imaging problems. Notwithstanding this,
data-driven methodologies have gained significant attention in recent years, since they demonstrate
improved performance in various practical scenarios while overcoming some challenges of classical
methods (see [4] and references therein). The starting point of data-driven approaches consists
in assuming that a finite set of pairs of measurements and exact solutions (x̄1, ū1), . . . , (x̄n, ūn),
n ∈ N, is available. This training set is then used to define, or refine, a regularization strategy to
be applied to any future observation x̄new, for which an exact solution is not known.

Objectives

The main objective of the internship is to extend, both from a theoretical and a practical point
of view, the work [5], which analyzes the following data-driven approach: in the variational model
(1), we fix the regularizer R and we aim to learn the regularization parameter λ ∈ (0,+∞) from
the given training set. This approach is based on the following bilevel optimization problem (see,
for instance, [6, 7]). Given a set Λ ⊂ (0,+∞), we select the regularization parameter as

λ̂ ∈ argmin
λ∈Λ

1

n

n∑
i=1

∥ui
λ − ūi∥2,
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where ui
λ := uλ(x̄i) is such that

uλ(x̄i) ∈ argmin
u∈U

ℓ(Au, x̄i) + λR(u),

see [8, Chapter 3] and references therein. We then utilize λ̂ as regularization parameter for subse-
quent instances of the same inverse problem: given x̄new, we consider uλ̂(x̄new) as an approximation
of ūnew.

To start, the student is expected to study the necessary tools for understanding the aforementioned
work, which range between supervised learning theory, inverse problems, and convex optimization.
Most of these tools can be found in [9]. Next, we mention some of the directions that could be
followed:

• Parametrized regularizers. The framework studied in [5] can be generalized by fixing
instead regularizers R that are parametrized by a vector θ = (θ1, ..., θk) ∈ Θ ⊆ Rk, k ∈ N,
and so of the form R = R(·, θ). The variational model in this cases reads as

min
u∈U

ℓ(Au, x) +R(u, θ).

Here, the objective is to learn the vector of parameters θ. Artificial neural networks that are
parametrized by a large set of scalars have been considered, e.g. the Total Deep Variation
[10]. A similar approach to the one defined above can be used to find the optimal θ given a
finite training set of input/output pairs.

• Space-varying Total Variation regularization. Let Ω represent the domain of the image
u∗ and let Ωk ⊆ U , k = 1, . . . ,m, 1 < m < +∞, denote bounded areas of the image u∗ such
that Ωi ∩ Ωj = ∅ and ∪kΩk = Ω. With this, we may consider, for every k = 1, . . . ,m, the
Total Variation regularizer (see, e.g., [11, 12]) restricted to the set Ωk, informally defined as

TVΩk
(u) :=

∑
(i,j)∈Ωk

∥(Du)i,j∥1,2,

where Du denotes the vector of discrete horizontal and vertical derivatives, and consider the
following problem

min
u

1

2
∥u− x∥22 +

m∑
k=1

λkTVΩk
(u).

The above formulations allows for different regularization parameters λk in different areas of
the image u∗, and can be seen as a weighted total variation regularizer. In this vein, several
works have been produced, see e.g. [13]. Yet, few theoretical guarantees have been provided
from a statistical learning viewpoint.

Practical aspects

We are looking for a highly motivated student, with a background in applied mathematics (opti-
mization, probability and statistics, geometry) and/or computer science (signal/image processing).
The theoretical modeling of the learning schemes will be complemented by extensive numerical val-
idation performed using the DeepInv Python library (https://deepinv.github.io/deepinv/).

The internship will be co-supervised by Jonathan Chirinos-Rodŕıguez (Post-doctoral researcher,
IRIT), Luca Calatroni (Associate Professor, University of Genova) and Emmanuel Soubies (CNRS
researcher, IRIT), at the IRIT laboratory in Toulouse, France. The intern will be granted a research
scholarship of around ∼670 euros/month.

Upon successful completion of the internship and subject to securing funding, PhD opportunities
may be available. Do not hesitate to contact us for more information.
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