Faculté des sciences et ingénierie (Toulouse III) Département de mathématiques – L3 ESR U.E. Analyse Numérique Année universitaire 2017-2018

Feuille de TD 1 : Analyse numérique matricielle

Exercice 1. Soit $M=\begin{pmatrix} -5 & -4 & 2 \\ 0 & 1 & 0 \\ -6 & -4 & 3 \end{pmatrix}$. Déterminer si M est diagonalisable sur $\mathbb R$ et

la diagonaliser le cas échéant

Exercice 2. Soient $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, $\overrightarrow{e_3}$ les vecteurs de coordonnées respectives (1;0;1), (1;2;1) et (0;-1;2) dans la base canonique de \mathbb{R}^3 . Après s'être assuré que la famille $(\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3})$ forme une base de \mathbb{R}^3 , l'orthonormaliser par le procédé de Gram-Schmidt.

Exercice 3. (Méthode de Gauss)

Résoudre les systèmes linéaires suivants avec la méthode du pivot de Gauss.

1.
$$\begin{cases} x+y+z &= 6/5 \\ 3x-2y-z &= 0 \\ 2x+y+\frac{6}{5}z &= -9/5 \end{cases}$$
2.
$$\begin{cases} x+y+z &= 2 \\ x+2y+z+w &= 0 \\ x-y+w &= 1 \\ 2x-3y+w &= 4 \end{cases}$$
3.
$$\begin{cases} x+y-2z &= 1 \\ x+z &= 0 \\ -2x+y-z &= -3 \end{cases}$$

Exercice 4. (Exemple de perturbation)

Soit

$$A = \begin{pmatrix} 7 & 10 \\ 5 & 7 \end{pmatrix}, \quad Y_1 = \begin{pmatrix} 10 \\ 7 \end{pmatrix} \quad \text{et} \quad Y_2 = \begin{pmatrix} 10, 1 \\ 6, 9 \end{pmatrix}.$$

Résoudree les équations $AX = Y_1$ et $AX = Y_2$.

Exercice 5. (Normes matricielles subordonnées) Soit $A = (a_{i,j})_{i,j \in \{1,...,N\}} \in \mathcal{M}_N(\mathbb{R})$.

- 1. On munit \mathbb{R}^N de la norme $\|\cdot\|_{\infty}$ et $\mathcal{M}_N(\mathbb{R})$ de la norme induite correspondante, notée aussi $\|\cdot\|_{\infty}$. Montrer que $\|A\|_{\infty} = \max_{i \in \{1,...,N\}} \sum_{j=1}^{N} |a_{i,j}|$.
- 2. On munit \mathbb{R}^N de la norme $\|\cdot\|_1$ et $\mathcal{M}_N(\mathbb{R})$ de la norme induite correspondante, notée aussi $\|\cdot\|_1$. Montrer que $\|A\|_1 = \max_{j \in \{1,\dots,N\}} \sum_{i=1}^N |a_{i,j}|$.
- 3. On munit \mathbb{R}^N de la norme $\|\cdot\|_2$ et $\mathcal{M}_N(\mathbb{R})$ de la norme induite correspondante, notée aussi $\|\cdot\|_2$. Montrer que $\|A\|_2 = (\rho(A^TA))^{\frac{1}{2}}$.

Exercice 6. (Propriétés générales du conditionnement I)

On munit \mathbb{R}^N d'une norme, notée $\|\cdot\|$, et $\mathcal{M}_N(\mathbb{R})$ de la norme subordonnée associée, notée aussi $\|\cdot\|$. Pour une matrice inversible $A \in \mathcal{M}_N(\mathbb{R})$, on note cond $(A) = \|A\| \|A^{-1}\|$.

- 1. Soit $A \in \mathcal{M}_N(\mathbb{R})$ une matrice inversible. Montrer que $\operatorname{cond}(A) \geq 1$.
- 2. Montrer que $\operatorname{cond}(\alpha A) = \operatorname{cond}(A)$ pour tout $\alpha \in \mathbb{R}^*$.
- 3. Soit $A, B \in \mathcal{M}_N(\mathbb{R})$ deux matrices inversibles. Montrer que $\operatorname{cond}(AB) \leqslant \operatorname{cond}(A)\operatorname{cond}(B)$.

Exercice 7. (Propriétés générales du conditionnement II)

On suppose que \mathbb{R}^N est muni de la norme euclidienne usuelle $\|\cdot\| = \|\cdot\|_2$ et $\mathcal{M}_N(\mathbb{R})$ de la norme induite, notée aussi $\|\cdot\|_2$. On note alors $\operatorname{cond}_2(A)$ le conditionnement d'une matrice A inversible.

- 1. Soit $A \in \mathcal{M}_N(\mathbb{R})$ une matrice inversible. On note σ_N (resp. σ_1) la plus grande (resp. petite) valeur propre de A^tA (noter que A^tA est une matrice symétrique définie positive). Montrer que $\operatorname{cond}_2(A) = \sqrt{\sigma_N/\sigma_1}$.
- 2. On suppose maintenant que A est symétrique définie positive, montrer que $\operatorname{cond}_2(A) = \lambda_N/\lambda_1$ où λ_N (resp. λ_1) est la plus grande (resp. petite) valeur propre de A.
- 3. Soit $A \in \mathcal{M}_N(\mathbb{R})$ une matrice inversible. Montrer que $\operatorname{cond}_2(A) = 1$ si et seulement si $A = \alpha Q$ où $\alpha \in \mathbb{R}^*$ et Q est une matrice orthogonale (c'est-à-dire $Q^t = Q^{-1}$).
- 4. Soit $A \in \mathcal{M}_N(\mathbb{R})$ une matrice inversible. On suppose que A = QR où Q est une matrice orthogonale. Montrer que $\operatorname{cond}_2(A) = \operatorname{cond}_2(R)$.
- 5. Soit $A, B \in \mathcal{M}_N(\mathbb{R})$ deux matrices symétriques définies positives. Montrer que $\operatorname{cond}_2(A+B) \leqslant \max\{\operatorname{cond}_2(A), \operatorname{cond}_2(B)\}.$