ARCHIVES : LIST OF COURSES  2016/2017.

BASIC COURSES

A1.    An introduction to discrete holomorphic dynamics.  (J. Raissy and X. Buff)   SyllabusA1

A2.    Sheaves and cohomology: an introduction. (J. Tapia)  SyllabusA2

A3.    Differential and algebraic topology. (T. Fiedler)    SyllabusA3

A4.     Introduction to partial differential equations (PDE).*  (J.M. Bouclet and M. Maris)       SyllabusA4

A5.     Elliptic PDE's and calculus of variations. (P. Bousquet and R. Ignat) SyllabusA5

A6.     Approximation of PDE's. (G. Haine, D. Matignon, M. Salaun and F. Rogier) SyllabusA6

A7.     Convergence of probability measures, functional limit theorems and applications. (F. Chapon) SyllabusA7

A8.     Stochastic calculus and Markov processes. (A. Reveillac and P. Cattiaux) SyllabusA8

A9.     Asymptotic statistics and modeling. (F. Gamboa and T.KleinSyllabusA9

 

ADVANCED COURSES

B1.     An introduction to Hodge theory. (M. Bernardara) SyllabysB1

B2.     Sheaves, Schemes, cohomology: an introduction (B. Toën) SyllabusB2

B3.    Controllability of parabolic PDEs: old and new. (F. Boyer)   SyllabusB3

B4.     Kinetic theory and approximation (F. Filbet) SyllabusB4

B5.     Stochastic optimization algorithms, non asymptotic and asymptotic behaviour. (S. Gadat) Syllabus B5

B6.     Mathematics of machine learning. (A. Garivier and S. Gerchinovitz) SyllabusB6

 

READING SEMINARS

C1.     Pure mathematics. (F. Costantino and S. Lamy)

C2.     Regularization of ill posed inverse problems. (P. MaréchalSyllabusC2

C3.     Mathematics and Biology. (G.Faye and S. Mirrahimi) SyllabusC3

C4.     Random models. (C. Pellegrini)

 

 

 * This course is 36h. The first 6hours consist in a refresher mini-course. All students of courses A4,A5 ,A6 have to attend this mini-course.

** To be confirmed.

 

You will find here a downloadable full program of the courses.