ARCHIVES : LIST OF COURSES  2017/2018.

BASIC COURSES

A1.    An introduction to discrete holomorphic dynamics.  (J. Raissy and X. Buff) SyllabusA1

A2.    An introduction to vector bundles and K-theory. (P. Carrillo-Rouse)  SyllabusA2

A3.    An introduction to complex geometry. (D. Popovici)    SyllabusA3

A4.     Introduction to partial differential equations (PDE).*  (J.M. Bouclet and M. Maris)   SyllabusA4

A5.     Elliptic PDE's and calculus of variations. (P. Bousquet and R. Ignat) SyllabusA5

A6.     Approximation of PDE's. (G. Haine, D. Matignon, M. Salaun and F. Rogier) SyllabusA6

A7.     Convergence of probability measures, functional limit theorems and applications. (F. Chapon) SyllabusA7

A8.     Stochastic calculus. (A. Reveillac ) SyllabusA8

A9.     Asymptotic statistics and modeling. (F. Gamboa and T.KleinSyllabusA9

 

ADVANCED COURSES

B1.      An introduction to Hodge theory. (M. Bernardara) SyllabusB1

B2.     Kähler-Einstein metrics on compact Kähler manifolds (A. Zeriahi) SyllabusB2

B3.     Controllability of parabolic PDEs: old and new. (F. Boyer)   SyllabusB3

B4.     Kinetic theory and approximation (F. Filbet) SyllabusB4

B5.     Stochastic optimization algorithms, non asymptotic and asymptotic behaviour. (S. Gadat) SyllabusB5

B6.     Mathematics and Biology. (P. Cattiaux and M. Costa) SyllabusB6

 

READING SEMINARS

C1.     Pure mathematics. (F. Costantino) Syllabus RS1

C2.     Numerical analysis of problems involving nonlinear boundary conditions. (P. Hild) SyllabusC2

C3.     Ginzburg-Landau vortices. (N. Godet and X. Lamy) SyllabusC3

C4.     Markov Processes. (A. Joulin and G. Fort) Syllabus C4

 

 

 * This course is 36h. The first 6hours consist in a refresher mini-course. All students of courses A4,A5 ,A6 have to attend this mini-course.