Aller au contenu Navigation Accès directs Connexion
Vous êtes ici :
ARCHIVES : LIST OF COURSES 2017/2018.
BASIC COURSES
A1. An introduction to discrete holomorphic dynamics. (J. Raissy and X. Buff) SyllabusA1
A2. An introduction to vector bundles and K-theory. (P. Carrillo-Rouse) SyllabusA2
A3. An introduction to complex geometry. (D. Popovici) SyllabusA3
A4. Introduction to partial differential equations (PDE).* (J.M. Bouclet and M. Maris) SyllabusA4
A5. Elliptic PDE's and calculus of variations. (P. Bousquet and R. Ignat) SyllabusA5
A6. Approximation of PDE's. (G. Haine, D. Matignon, M. Salaun and F. Rogier) SyllabusA6
A7. Convergence of probability measures, functional limit theorems and applications. (F. Chapon) SyllabusA7
A8. Stochastic calculus. (A. Reveillac ) SyllabusA8
A9. Asymptotic statistics and modeling. (F. Gamboa and T.Klein) SyllabusA9
ADVANCED COURSES
B1. An introduction to Hodge theory. (M. Bernardara) SyllabusB1
B2. Kähler-Einstein metrics on compact Kähler manifolds (A. Zeriahi) SyllabusB2
B3. Controllability of parabolic PDEs: old and new. (F. Boyer) SyllabusB3
B4. Kinetic theory and approximation (F. Filbet) SyllabusB4
B5. Stochastic optimization algorithms, non asymptotic and asymptotic behaviour. (S. Gadat) SyllabusB5
B6. Mathematics and Biology. (P. Cattiaux and M. Costa) SyllabusB6
READING SEMINARS
C1. Pure mathematics. (F. Costantino) Syllabus RS1
C2. Numerical analysis of problems involving nonlinear boundary conditions. (P. Hild) SyllabusC2
C3. Ginzburg-Landau vortices. (N. Godet and X. Lamy) SyllabusC3
C4. Markov Processes. (A. Joulin and G. Fort) Syllabus C4
* This course is 36h. The first 6hours consist in a refresher mini-course. All students of courses A4,A5 ,A6 have to attend this mini-course.