ARCHIVES : LIST OF COURSES 2018/2019.
BASIC COURSES
A1. An introduction to Riemann Surfaces. (H. Guenancia) SyllabusA1
A2. An introduction to metric and Riemannian geometry. (J. Bertrand) SyllabusA2
A3. Introduction to dynamics : ergodic tools. (F. Berteloot) SyllabusA3
A4. Elliptic PDEs and evolution problems (P. Laurençot, M.H. Vignal). (SyllabusA4)
A5. Convex Analysis / Optimisation and applications. (C. Dossal, F. Malgouyres, A. Rondepierre)(SyllabusA5)
A6. Discretization of PDEs* :
Analysis and discretization of transport equations.(C. Negulescu) (SyllabusA6Part1)
Approximation of PDE’s. (G. Haine, D. Matignon, M. Salaun, F. Rogier)(SyllabusA6Part2)
A7. Convergence of probability measures, functional limit theorems and applications. (F. Chapon) SyllabusA7
A8. Stochastic calculus. (F. Barthe ) SyllabusA8
A9. Asymptotic statistics and modeling. (F.Bachoc - P. Neuvial) SyllabusA9
ADVANCED COURSES
B1. Special functions and q-calculus. (J.Sauloy) SyllabusB1
B2. Introduction to geometric group theory and 3-manifolds topology (J. Raimbault) SyllabusB2
B3. Theoretical and numerical analysis of dispersive PDEs (C. Besse, S. Le Coz) (SyllabusB3)
B4. Qualitative studies of PDEs : a dynamical system approach (G. Faye) (SyllabusB4)
B5. Learning. (E. Pauwels) SyllabusB5
B6. Systems of particules. (R. Chhaibi) SyllabusB6
READING SEMINARS
C1. Pure mathematics. (J.F. Barraud) Syllabus C1
C2. PDEs and applications. (J.F. Coulombel, F. Filbet, F. De Gournay) SyllabusC2
C3. Markov Processes. (A. Joulin and G. Fort) SyllabusC3
* This course will be composed of two mandatory courses