ARCHIVES : LIST OF COURSES  2018/2019.
 

BASIC COURSES

A1.    An introduction to Riemann Surfaces.  (H. Guenancia) SyllabusA1

A2.    An introduction to metric and Riemannian geometry. (J. Bertrand)  SyllabusA2

A3.    Introduction to dynamics : ergodic tools. (F. Berteloot) SyllabusA3

A4.     Elliptic PDEs and evolution problems (P. Laurençot, M.H. Vignal). (SyllabusA4)

A5.     Convex Analysis / Optimisation and applications. (C. Dossal, F. Malgouyres, A. Rondepierre)(SyllabusA5)

A6.     Discretization of PDEs* :

    Analysis and discretization of transport equations.(C. Negulescu) (SyllabusA6Part1)
    Approximation of PDE’s. (G. Haine, D. Matignon, M. Salaun, F. Rogier)(SyllabusA6Part2)

A7.     Convergence of probability measures, functional limit theorems and applications. (F. Chapon) SyllabusA7

A8.     Stochastic calculus. (F. Barthe ) SyllabusA8

A9.     Asymptotic statistics and modeling. (F.Bachoc - P. Neuvial)  SyllabusA9

 

ADVANCED COURSES

B1.      Special functions and q-calculus. (J.Sauloy) SyllabusB1

B2.     Introduction to geometric group theory and 3-manifolds topology (J. Raimbault) SyllabusB2

B3.     Theoretical and numerical analysis of dispersive PDEs (C. Besse, S. Le Coz) (SyllabusB3)

B4.     Qualitative studies of PDEs : a dynamical system approach (G. Faye) (SyllabusB4)

B5.     Learning. (E. Pauwels) SyllabusB5

B6.     Systems of particules. (R. Chhaibi) SyllabusB6

 

READING SEMINARS

C1.     Pure mathematics. (J.F. Barraud) Syllabus C1

C2.     PDEs and applications. (J.F. Coulombel, F. Filbet, F. De Gournay) SyllabusC2

C3.     Markov Processes. (A. Joulin and G. Fort) SyllabusC3

 

 

 * This course will be composed of two mandatory courses