ARCHIVES: LIST OF COURSES  2019/2020.

BASIC COURSES

A1.    Holomorphic dynamics in dimension one : an introduction.  (F. Berteloot and P. Roesch) Syllabus A1

A2.    An introduction to complex geometry. (E. Legendre)  Syllabus A2

A3.    An introduction to algebraic geometry and number theory. (J. Gillibert) Syllabus A3

A4.     Elliptic PDEs and evolution problems (S. Ervedoza et P. Laurençot). (Syllabus A4)

A5.     Convex Analysis / Optimisation and applications. (C. Dossal et P. Maréchal)(Syllabus A5)

A6.     Discretization of PDEs* :

A7.     Convergence of probability measures, functional limit theorems and applications. (P. Fougères, P. Petit) Syllabus A7

A8.     Stochastic calculus. (F. Barthe ) SyllabusA8

A9.     Asymptotic statistics and modeling. (F.Bachoc - P. NeuvialSyllabusA9

 

ADVANCED COURSES

B1.      Holomorphic dynamics in dimension one : some advanced topics. (F. Bertheloot and P.Roesch) Syllabus B1

B2.     Deformation theory of compact complex manifolds (D. Popovici) Syllabus B2

B3.     Theoretical and numerical analysis of dispersive PDEs (C. Besse et S. Le Coz) (Syllabus B3)

B4.     Qualitative studies of PDEs : a dynamical system approach (G. Faye) (SyllabusB4)

B5.     Learning. (E. Pauwels) SyllabusB5

B6.     Systems of particules. (R. Chhaibi) SyllabusB6

 

READING SEMINARS

C1.     Riemann Surfaces. (F. Costantino) Syllabus RS1

C2.     PDEs and applications. (J.F. CoulombelA. Trescases, F. De Gournay) Syllabus C2

C3.     Stein method and Applications. (M. Fathi, G. Cebron) SyllabusC3

 

 

 * This course will be composed of two mandatory courses