Aller au contenu Navigation Accès directs Connexion
Vous êtes ici :
BASIC COURSES
A1. Holomorphic dynamics in dimension one : an introduction. (F. Berteloot and P. Roesch) Syllabus A1
A2. An introduction to complex geometry. (E. Legendre) Syllabus A2
A3. An introduction to algebraic geometry and number theory. (J. Gillibert) Syllabus A3
A4. Elliptic PDEs and evolution problems (S. Ervedoza et P. Laurençot). (Syllabus A4)
A5. Convex Analysis / Optimisation and applications. (C. Dossal et P. Maréchal)(Syllabus A5)
A6. Discretization of PDEs* :
A7. Convergence of probability measures, functional limit theorems and applications. (P. Fougères, P. Petit) Syllabus A7
A8. Stochastic calculus. (F. Barthe ) SyllabusA8
A9. Asymptotic statistics and modeling. (F.Bachoc - P. Neuvial) SyllabusA9
ADVANCED COURSES
B1. Holomorphic dynamics in dimension one : some advanced topics. (F. Bertheloot and P.Roesch) Syllabus B1
B2. Deformation theory of compact complex manifolds (D. Popovici) Syllabus B2
B3. Theoretical and numerical analysis of dispersive PDEs (C. Besse et S. Le Coz) (Syllabus B3)
B4. Qualitative studies of PDEs : a dynamical system approach (G. Faye) (SyllabusB4)
B5. Learning. (E. Pauwels) SyllabusB5
B6. Systems of particules. (R. Chhaibi) SyllabusB6
READING SEMINARS
C1. Riemann Surfaces. (F. Costantino) Syllabus RS1
C2. PDEs and applications. (J.F. Coulombel, A. Trescases, F. De Gournay) Syllabus C2
C3. Stein method and Applications. (M. Fathi, G. Cebron) SyllabusC3
* This course will be composed of two mandatory courses