Aller au contenu Navigation Accès directs Connexion
Vous êtes ici :
BASIC COURSES
A1. Holomorphic dynamics in dimension one : an introduction. (F. Berteloot and P. Roesch) Syllabus A1
A2. Introduction to Riemannian geometry. (J. Bertrand) Syllabus A2
A3. Introduction to differential and algebraic topology. (T. Fiedler) Syllabus A3
A4. Elliptic PDEs and evolution problems (J. Fehrenbach et J. Royer). Syllabus A4
A5. Convex Analysis / Optimisation and applications. (C. Dossal et P. Maréchal) Syllabus A5
A6. Discretization of PDEs* :
A7. Convergence of probability measures, functional limit theorems and applications. (P. Fougères, P. Petit) Syllabus A7
A8. Stochastic calculus. (P. Maillard) Syllabus A8
A9. Asymptotic statistics and modeling. (P. Berthet) Syllabus A9
ADVANCED COURSES
B1. Holomorphic dynamics in dimension one : some advanced topics. (F. Berteloot and P.Roesch) Syllabus B1
B2. Topics in Differential Complex Geometry (E. Legendre) Syllabus B2
B3. Hamilton-Jacobi equations for biology (S. Mirrahimi) Syllabus B3
B4. Stability analysis of ODE's or PDE's periodic solutions. Theoretical and numerical aspects. (P. Noble) Syllabus B4
B5. Learning. (J. M. Loubes, B. Laurent-Bonneau) Syllabus B5
B6. Lévy Processes (L. Huang) Syllabus B6
READING SEMINARS
C1. Geometric group theory. (S. Lamy, M. Sablik) Syllabus C1
C2. PDEs and applications. (P. Cantin, G. Faye, S. Le Coz) Syllabus C2
C3. Stein method and Applications. (M. Fathi, G. Cebron) Syllabus C3
* This course will be composed of two mandatory courses