LIST OF COURSES  2020/2021


A1.    Holomorphic dynamics in dimension one : an introduction.  (F. Berteloot and P. Roesch) Syllabus A1

A2.    Introduction to Riemannian geometry. (J. Bertrand)  Syllabus A2

A3.    Introduction to differential and algebraic topology. (T. Fiedler) Syllabus A3

A4.     Elliptic PDEs and evolution problems (J. Fehrenbach et J. Royer).  Syllabus A4

A5.     Convex Analysis / Optimisation and applications. (C. Dossal et P. MaréchalSyllabus A5

A6.     Discretization of PDEs* :

A7.     Convergence of probability measures, functional limit theorems and applications. (P. Fougères, P. Petit) Syllabus A7

A8.     Stochastic calculus. (P. Maillard) Syllabus A8

A9.     Asymptotic statistics and modeling. (P. Berthet)  Syllabus A9


B1.      Holomorphic dynamics in dimension one : some advanced topics. (F. Berteloot and P.Roesch) Syllabus B1

B2.     Topics in Differential Complex Geometry (E. Legendre) Syllabus B2

B3.     Hamilton-Jacobi equations for biology (S. MirrahimiSyllabus B3

B4.     Stability analysis of ODE's or PDE's periodic solutions. Theoretical and numerical aspects. (P. Noble) Syllabus B4

B5.     Learning. (J. M. Loubes, B. Laurent-Bonneau) Syllabus B5

B6.     Lévy Processes (L. Huang) Syllabus B6


C1.     Geometric group theory. (S. Lamy, M. Sablik) Syllabus C1

C2.     PDEs and applications. (P. Cantin, G. Faye, S. Le Coz) Syllabus C2

C3.     Stein method and Applications. (M. Fathi, G. Cebron) Syllabus C3

 * This course will be composed of two mandatory courses