Aller au contenu Navigation Accès directs Connexion
Vous êtes ici :
BASIC COURSES
A1. Complex analytic and differential geometry (V. Guedj) Syllabus A1
A2. Hyperbolic manifolds (J.-P. Otal) Syllabus A2
A3. Introduction to algebraic geometry (T. Dedieu) Syllabus A3
A4. Elliptic PDEs and evolution problems (J. Fehrenbach et J. Royer). Syllabus A4
A5. Convex Analysis / Optimisation and applications. (C. Dossal et P. Maréchal) Syllabus A5
A6. Discretization of PDEs* :
A7. Convergence of probability measures, functional limit theorems and applications. (R. Chhaibi) Syllabus A7
A8. Stochastic calculus. (P. Maillard) Syllabus A8
A9. Asymptotic statistics and modeling. (P. Berthet) Syllabus A9
ADVANCED COURSES
B1. Positive cones in Kähler geometry (H. Guenancia) Syllabus B1
B2. Some topics in conformal geometry (Y. Ge) Syllabus B2
B3. Hamilton-Jacobi equations for biology (S. Mirrahimi) Syllabus B3
B4. Hyperbolic initial boundary value problems and numerical schemes (J.-F. Coulombel) Syllabus B4
B5. Learning. (J. M. Loubes, B. Laurent-Bonneau) Syllabus B5
B6. Lévy Processes (L. Huang) Syllabus B6
READING SEMINARS
C1. Toric Varieties, after Fulton (S. Lamy, Y. Genzmer) Syllabus C1
C2. PDEs and applications. (P. Cantin, G. Faye, S. Le Coz) Syllabus C2
C3. Probability and statistics in quantum mechanics and quantum mechanics for probabilists and statisticians (T. Benoist & C. Pellegrini) Syllabus C3 * This course will be composed of two mandatory courses