LIST OF COURSES 2022/2023
BASIC COURSES (choose 4)
A1. Complex analytic and differential geometry (V. Guedj) Syllabus A1
A2. Hyperbolic manifolds (J.-P. Otal) Syllabus A2
A3. Introduction to differential and algebraic topology (T. Fiedler) Syllabus A3
A4. Spectral theory (J. Royer). Syllabus A4
A5. Elliptic PDEs and Calculus of Variations (R. Ignat) Syllabus A5
A6. An introduction to the theoretical and numerical analysis of nonlinear conservation laws (F. Boyer) Syllabus A6
A7. Convergence of probability measures, infinite dimensional limit theorems and optimal transport. (R. Chhaibi) Syllabus A7
A8. Stochastic calculus. (L. Coutin) Syllabus A8
A9. Asymptotic statistics and modeling. (P. Neuvial, F. Gamboa) Syllabus A9
A10. Approximation of PDEs (G. Haine, D. Matignon, S. Pernet, M. Salaün) Syllabus A10
A11. Advanced statistical methods (X. Gendre, F. Simatos) Syllabus A11
ADVANCED COURSES (choose 2)
B1. Abelian Topological Quantum Field Theory in dim 3 and the Weil representation (F. Deloup) Syllabus B1
B2. An Introduction to K-theory for C* -algebras (P. Carrillo-Rouse) Syllabus B2
B3. Reaction-Diffusion Equations (G. Faye, J.-M. Roquejoffre) Syllabus B3
B4. Hyperbolic initial boundary value problems and numerical schemes (J.-F. Coulombel) Syllabus B4
B5. Random Matrices and Free Probability Theory (M. Capitaine, G. Cebron) Syllabus B5
B6. An Introduction to Sensitivity Analysis (A. Lagnoux, O. Roustant) Syllabus B6
READING SEMINARS (choose 1)
C1. Geometric Group Theory (S. Lamy, A. Hilion) Syllabus C1
C2. Nonlinear Dispersive Equations (S. Le Coz) Syllabus C2
C3. Probability and statistics in quantum mechanics and quantum mechanics for probabilists and statisticians (T. Benoist & C. Pellegrini) Syllabus C3