LIST OF COURSES  2022/2023

BASIC COURSES (choose 4)

A1. Complex analytic and differential geometry (V. GuedjSyllabus A1

A2. Hyperbolic manifolds (J.-P. OtalSyllabus A2

A3. Introduction to differential and algebraic topology (T. Fiedler)  Syllabus A3

A4. Spectral theory (J. Royer).  Syllabus A4

A5. Elliptic PDEs and Calculus of Variations (R. Ignat) Syllabus A5

A6. An introduction to the theoretical and numerical analysis of nonlinear conservation laws (F. Boyer) Syllabus A6

A7. Convergence of probability measures, infinite dimensional limit theorems and optimal transport. (R. ChhaibiSyllabus A7

A8. Stochastic calculus. (L. Coutin) Syllabus A8

A9. Asymptotic statistics and modeling. (P. Neuvial, F. Gamboa) Syllabus A9 

A10. Approximation of PDEs (G. Haine, D. Matignon, S. Pernet, M. Salaün) Syllabus A10

A11.  Advanced statistical methods (X. Gendre, F. Simatos) Syllabus A11


B1. Abelian Topological Quantum Field Theory in dim 3 and the Weil representation (F. Deloup) Syllabus B1

B2. An Introduction to K-theory for C* -algebras (P. Carrillo-Rouse) Syllabus B2

B3. Reaction-Diffusion Equations (G. Faye, J.-M. Roquejoffre) Syllabus B3 

B4. Hyperbolic initial boundary value problems and numerical schemes (J.-F. CoulombelSyllabus B4

B5. Random Matrices and Free Probability Theory (M. CapitaineG. Cebron) Syllabus B5

B6. An Introduction to Sensitivity Analysis (A. Lagnoux, O. Roustant) Syllabus B6


C1. Geometric Group Theory (S. Lamy, A. Hilion) Syllabus C1

C2. Nonlinear Dispersive Equations (S. Le Coz) Syllabus C2

C3. Probability and statistics in quantum mechanics and quantum mechanics for probabilists and statisticians (T. Benoist & C. Pellegrini) Syllabus C3